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a  b  s  t  r  a  c  t

Multivariate  pattern  analysis  (MVPA)  is  a powerful  tool  for relating  theories  of  cognitive  function  to  the
neural  dynamics  observed  while  people  engage  in  cognitive  tasks.  Here,  we  use  the  Context  Maintenance
and  Retrieval  model  of  free  recall  (CMR;  Polyn  et al.,  2009a)  to interpret  variability  in the  strength  of
task-specific  patterns  of distributed  neural  activity  as  participants  study  and  recall  lists  of words.  The
CMR model  describes  how  temporal  and source-related  (here,  encoding  task)  information  combine  in
a contextual  representation  that  is responsible  for guiding  memory  search.  Each  studied  word  in  the
free-recall  paradigm  is  associated  with  one  of  two  encoding  tasks  (size  and  animacy)  that  have  distinct
neural  representations  during  encoding.  We  find  evidence  for the  context  retrieval  hypothesis  central  to
eural network
MRI

the CMR  model:  Task-specific  patterns  of  neural  activity are  reactivated  during  memory  search,  as  the
participant  recalls  an item  previously  associated  with  a  particular  task.  Furthermore,  we  find  that  the
fidelity  of  these  task  representations  during  study  is related  to task-shifting,  the  serial  position  of the
studied  item,  and  variability  in  the  magnitude  of  the  recency  effect  across  participants.  The  CMR  model
suggests  that  these  effects  may  be related  to a  central  parameter  of  the  model  that  controls  the  rate  that
an internal  contextual  representation  integrates  information  from  the  surrounding  environment.
. Introduction

Multivariate pattern analysis (MVPA) techniques provide a nat-
ral framework for investigating the dynamics of topographic
atterns of neural activity, which allow us to make contact with
sychological theories that describe the dynamics of distributed
epresentations of cognitive activity. These MVPA techniques,
rawn from the domains of computer science and machine learn-

ng, allow one to classify a pattern as belonging to one of a number
f categories (Duda, Hart, & Stork, 2001). Since Haxby et al. (2001)
opularized these techniques by examining distributed patterns
f activity in neuroimaging data using fMRI, researchers have used
hem to characterize the topography of the hemodynamic response
n a wide variety of experimental paradigms (e.g., Haynes & Rees,
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

005; Kamitani & Tong, 2005; Kriegeskorte, Goebel, & Bandettini,
006; McDuff, Frankel, & Norman, 2009; Polyn, Natu, Cohen, &
orman, 2005).

� SMP  and JEK wrote the manuscript, and JEK carried out the fMRI analyses. SMP
nd NWM  developed the paradigm, with help from all authors, and all authors were
nvolved in data collection. SMP  and JDM carried out the simulations. ZDC and JDM
arried out many of the behavioral analyses.
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However, these studies, while fueling theoretical debate on
many levels (e.g., Cohen & Tong, 2001; Kanwisher & Yovel, 2006;
Martin, 2007), have not utilized the formal computational machin-
ery developed by cognitive researchers to characterize how the
cognitive system might use distributed representations to carry
out its most fundamental operations (e.g., Bower, 1972, chap. 5;
Rumelhart & McClelland, 1986; Underwood, 1969). In particular,
attribute-based theories of cognition, in which cognitive repre-
sentations are modeled as vectors in a high-dimensional space,
generally provide a wealth of predictions regarding the struc-
ture and dynamics of distributed patterns in the cognitive system.
The attribute-based approach has been used in diverse domains
within memory, including category learning (e.g., Nosofsky, 1986),
recognition memory (e.g., Kahana & Sekuler, 2002; Murdock,
1982; Shiffrin & Steyvers, 1997), cued recall (e.g., Hintzman,
1984; Mensink & Raaijmakers, 1988), and free recall (e.g., Howard
& Kahana, 2002a; Polyn, Norman, & Kahana, 2009a; Sederberg,
Howard, & Kahana, 2008).

One class of attribute-based models has been quite successful
in explaining the nuanced pattern of behavioral results observed
in the free-recall paradigm: the retrieved context models of human
memory (Howard & Kahana, 2002a; Howard, Wingfield, & Kahana,
2006; Polyn et al., 2009a; Sederberg et al., 2008). These models,
ynamics of task context in free recall. Neuropsychologia (2011),

described below, explain how an internal context representation
is used to probe the contents of memory, and how information
retrieved during memory search returns the context representation
to a prior state, influencing the course of the subsequent memory

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:sean.polyn@vanderbilt.edu
dx.doi.org/10.1016/j.neuropsychologia.2011.08.025


 ING Model

N

2 sychol

s
m
2

c
t
c
t
a
d
a
r
t
r
a
i
i
t
r
a
&
t
L
r
K
o
2

1

i
m
t
e
i
J
c
r

(
C
r
i
r
c
w

r
i
a
t
b
r
a
a
i
p
t
c

m

r

ARTICLESY-4241; No. of Pages 11

S.M. Polyn et al. / Neurop

earch. Relating these models to the neural systems that support
emory search is a major goal of ongoing research (Polyn & Kahana,

008).
Polyn et al. (2005) tested the core prediction of retrieved

ontext models in a neuroimaging study of free recall in which
he studied items were drawn from three neurally discriminable
ategories (celebrities, landmarks, and objects). They found that
hese category-related patterns reactivated during memory search,
nd that the rise in strength of a category-related pattern pre-
icted upcoming recalls from that category. In terms of the MVPA
pproach, one can think of a set of categorized items, with neu-
ally distinct representations, as a set of contrast dyes injected into
he memory system as each item is studied. If one detects the neu-
al representation of a particular category during the memory test,

 trace of the dye is observed; the system has successfully revis-
ted a past state. This is a powerful approach that has been used
n a number of neurorecording studies of the human memory sys-
em. Researchers have found evidence for reinstatement of activity
elated to the modality of the studied material during recognition
nd cued recall (Nyberg, Habib, & Tulving, 2000; Wheeler, Petersen,

 Buckner, 2000), the reinstatement of category-related informa-
ion during cued recall (Kuhl, Rissman, Chun, & Wagner, 2011;
ewis-Peacock & Postle, 2008), and reinstatement of encoding task-
elated activity during a recognition task (Johnson & Rugg, 2007;
ahn, Davachi, & Wagner, 2004), as well as during a source mem-
ry task (McDuff et al., 2009; for a review see Danker & Anderson,
010).

.1. Computational models of retrieved context

Retrieved context models provide a framework with which to
nterpret the functional role of reactivated neural activity during

emory search. A promising candidate framework is the Con-
ext Maintenance and Retrieval (CMR) model of free recall (Polyn
t al., 2009a),  which describes how the source context (reflect-
ng the circumstances in which an item is encountered, as in
ohnson, Hashtroudi, & Lindsay 1993) associated with studied items
an be used to guide memory search for those items during free
ecall.

Retrieved context models of memory search, such as TCM
Howard & Kahana, 2002a),  TCM-A (Sederberg et al., 2008), and
MR  (Polyn et al., 2009a),  consist of two interacting cognitive rep-
esentations: a vector representation of the features of the study
tem, and a vector representation of the state of context. These two
epresentations can influence one another through two  sets of asso-
iative connections: item-to-context weights and context-to-item
eights.1

During the study period, the pattern of activity of the feature
epresentation reflects the characteristics of the environment. This
ncludes the physical characteristics of the study item, as well
s the characteristics of the task cue that indicates to the par-
icipant which judgment task to use. Each task is represented
y a distinct pattern of activity. As mentioned, these featural
epresentations influence context through the item-to-context
ssociations. The context elements have integrative machinery that
llow them to maintain traces of their prior states: When new
nformation related to the current state of the environment is
rojected along the item-to-context weights, the new state of con-
ext is a blend of the incoming information and the prior state of
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

ontext.
This integrative machinery determines how much new infor-

ation is pushed into the context representation as each item

1 Here, we  describe the dynamics of CMR, although nearly all of the non-source-
elated machinery is equivalent to that of the other models (TCM and TCM-A).
 PRESS
ogia xxx (2011) xxx– xxx

is studied; a parameter of the model (ˇenc) controls the rate of
integration. In CMR, there are two  subdivisions to the context repre-
sentation: task context and temporal context.2 The characteristics
of the task cue influence the representation of task context and
the characteristics of the studied item influence the representa-
tion of temporal context. The context integration parameter can
be different for each of the context subdivisions: ˇsource

enc and ˇtemp
enc .

A high value of ˇsource
enc will cause task context to update rapidly

(i.e., when the model shifts from one task to another, the new task
representation mostly pushes the old task representation out of
task context). A high value of ˇtemp

enc will cause temporal context to
update rapidly (i.e., when a new item is studied, the item represen-
tation mostly pushes the older item representations out of temporal
context). Polyn et al. (2009a) assumed that these two  parameters
(ˇsource

enc and ˇtemp
enc ) were independent, but did not assess the viabil-

ity of a model variant in which the values for the two were related
to one another (or controlled by a single parameter). Below, we
explore the possibility that the values of ˇsource

enc and ˇtemp
enc are not

independent in a particular person (i.e., if she has a high value for
ˇsource

enc , she will also has a high value for ˇtemp
enc ). This allows the

model to account for an observed relationship between the dis-
criminability of task representations (governed by task context),
and the magnitude of the recency effect (governed by temporal
context).

When an item is studied, an episodic memory is formed by
linking the item features to the currently active pattern of contex-
tual activity. This is accomplished by altering the item-to-context
and the context-to-item weights in the network using a Hebbian
learning rule (which increases the associative strength between
co-active elements). This episodic association serves two major
purposes. The associations formed on the context-to-item weights
allow the context representation to serve as a retrieval cue: If a
particular context representation is reactivated, it can now be used
to revive the pattern of item features that co-occurred with that
particular context state. The associations formed on the item-to-
context weights allow the model to engage in contextual retrieval:
If a particular item representation is reactivated, it can now be used
to revive the pattern of contextual activity that prevailed when
it was originally studied. This is the heart of the retrieved con-
text framework; when a participant remembers a particular item,
the memory system retrieves not only the features of that item,
but also the context representation that prevailed when that item
was originally encountered. This process, thought to be unique to
human memory retrieval, has been described as mental time travel
(Tulving, 2002).

These dynamics allow retrieved context models to explain the
organizational phenomena observed during free recall. There are
three major forms of organization: temporal, semantic, and source
(Polyn et al., 2009a). We  will describe temporal and source orga-
nization here (for a discussion of semantic organization, refer to
Polyn, Erlikhman, & Kahana, 2011; Polyn et al., 2009a).  Tempo-
ral organization is exemplified by the contiguity effect (Kahana,
Howard, & Polyn, 2008), the tendency for successively recalled
items to come from neighboring serial positions on the study
list. Temporal organization arises because the temporal context
representation changes slowly over the course of the list. Thus,
neighboring items are associated with similar states of the tem-
poral context representation. When a particular item is recalled,
the system retrieves the contextual state that prevailed when that
ynamics of task context in free recall. Neuropsychologia (2011),

item was originally studied. This retrieved context is a good cue
for the items in neighboring list positions to the just-recalled item,
leading to temporal organization.

2 The term temporal is not meant in terms of clock time, but rather in terms of list
position; context is updated each time a new item is studied.

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
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all  classification analyses, a penalty parameter of 50 was used.

2.5.2.1. The study period. In order to train a classifier to discriminate between task
representations, time-points from the study period were labeled as belonging to
ARTICLESY-4241; No. of Pages 11
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During memory search, items associated with the same source
ontext also tend to be recalled successively. Recall organization is
nfluenced both by external source characteristics such as modal-
ty, typeface, and gender of a speaker (Hintzman, Block, & Inskeep,
972; Murdock & Walker, 1969) and internal source characteris-
ics such as encoding task (Polyn et al., 2009a; Polyn, Norman,

 Kahana, 2009b).  According to CMR, retrieved context contains
nformation about the task used to process the studied item. This
ask information is used to guide the next recall attempt, so suc-
essively recalled items tend to be associated with the same study
ask. Thus, CMR  predicts that task-related patterns of neural activ-
ty should be reactivated during memory search, to the extent that
he task-related patterns reflect the operation of task context. The
ntegrative machinery of the context representation leads to pre-
ictions about variability in the fidelity of task representations
uring the study period as well. Specifically, when the participant
hifts from one task to another, the model predicts that residual
ctivation related to the previous task will remain in the context
epresentation. The predictions of CMR  regarding the fidelity of
eural task representations will be examined more thoroughly in

 simulation experiment described below.
With this framework in mind, we turn to the results of a

euroimaging study of free recall, in which participants shifted
etween two  encoding tasks (a size judgment and an animacy

udgment) within-list. We  find evidence for distinct neural rep-
esentations of encoding tasks during the study period, and find
hat the fidelity of these representations varies both within partic-
pant and across participants in reliable ways. These task-specific
atterns of neural activity are reactivated during recall, allowing

 classifier to identify the encoding task that was used to study
he remembered item. The results are discussed in terms of the
etrieved context modeling framework.

. Methods

.1. Participants

Participants were 20 (12 female) native English speakers between 18 and 35
ears of age. Consent was obtained in accordance with procedures approved by the
anderbilt University Institutional Review Board. Participants were paid $20/h for

heir participation, with up to an additional $10 earned dependent upon perfor-
ance in the task.

.2. Experimental procedure

Participants were run in a variant of the free-recall paradigm, in which they stud-
ed  a sequence of 12 lists (spanning two  separate sessions), each of which contained
4  study items. Stimuli were presented with a computer running PyEPL (Geller,
chleifer, Sederberg, Jacobs, & Kahana, 2007). Each list was  directly followed by
ither a free-recall test or a source recognition test. Each session included 3 free
ecall lists and 3 source recognition lists; the conditions were pseudo-randomly
rdered within each session. Here, we focus primarily on the free-recall trials. Two
ifferent encoding tasks were used in the experiment. The size task involved judg-

ng whether an item was  bigger or smaller than a shoebox, while the animacy task
nvolved deciding whether an item was living or nonliving. Prior to stimulus presen-
ation, a cue appeared on the screen for 0.7 s in order to indicate which task would
e  performed next. The size task cue was  a line drawing of a shoebox; the animacy
ask cue was a line drawing of a heart. The line drawings were of similar size and
ontrast. After presentation of the task cue, there was a fixation interval of 0.3 ± 0.1 s,
ollowed by presentation of the study item for 2.5 s, during which the participant

ade her judgment. After each stimulus presentation, an inter-stimulus fixation
nterval followed for between 0.5 and 5 s. The order of tasks and the durations of the
nter-stimulus intervals were determined pseudo-randomly to optimize estimation
f the hemodynamic response to each task (Dale, 1999), with the constraints that a
ask was not repeated more than 6 consecutive times, and that half of the items on
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

 given list were studied with each of the two  tasks.
After the final study item was presented on a given list, participants were given

5  s to freely recall as many items as they could remember from the most recent
ist, in any order. Vocal responses were recorded using a scanner-safe voice record-
ng system (Resonance Technologies, Inc.). Scanner noise was removed from audio
ecordings using custom software (Cusack, Cumming, Bor, Norris, & Lyzenga, 2005)
 PRESS
ogia xxx (2011) xxx– xxx 3

and the Noise Removal tool in Audacity, and vocalized responses were scored offline
using PyParse (Solway, Geller, Sederberg, & Kahana, 2010) and Penn TotalRecall.3

Each of the 20 participants performed 4 sessions of the free-recall paradigm. The
first two sessions were performed in the laboratory while we recorded scalp elec-
troencephalographic (EEG) activity, not reported here. These two  sessions allowed
participants to become familiar with the task, and allowed us to obtain stable esti-
mates of behavioral measures, such as reaction time and response consistency. The
two subsequent sessions were performed in the 3T Phillips MRI  scanner at the Van-
derbilt University Institute of Imaging Science (VUIIS). The 20 participants who were
tested at VUIIS are a subset of 55 participants who were tested in the laboratory using
this paradigm. Below, we report behavioral results from the full 55 participant study.
The  neuroimaging analyses in this report focus on the two experimental sessions
in  the scanner. The only paradigmatic difference between the laboratory sessions
and the sessions carried out at VUIIS is the appearance of same-task trials (trials in
which all items were studied using the same encoding task) in the laboratory ses-
sions. These same-task trials were used to calculate a baseline for our measure of
source organization, described below.

2.3. Word pool and construction of the study lists

Words were drawn from a word pool of 812 items. This is a subset of words from
the  USF free-association study (Nelson, McEvoy, & Schreiber, 2004) which were used
in  the Word Association Spaces study of the semantic meanings of words (Steyvers,
Shiffrin, & Nelson, 2004). This subset was  chosen based on the appropriateness of the
two encoding tasks for judging the word, and based on the consistency of responses
made by a separate set of 42 participants making the same semantic judgments on
the words. If greater than 75% of the participants in this independent study made
the same judgment on a particular word (e.g., big for truck), the word was eligible
for inclusion.

A set of 24 words were randomly sampled without replacement from a larger
pool to create a given study list. The task order (and inter-stimulus intervals) for
a  given list was determined by software designed to optimize estimation of the
hemodynamic response (as mentioned above; Dale, 1999). Lists were inspected to
ensure that the number of items associated with each response (i.e., big, small, living,
nonliving)  was balanced: if more than 70% of the items judged with a particular task
were associated with the same response, the list was recreated. We also inspected
WAS  semantic similarity scores for the list items: if any pair of items had a similarity
score ≥0.55 (measured using cosine distance), the list was recreated.

2.4.  fMRI data acquisition

Functional images were collected using an EPI pulse sequence (TR = 2000 ms,
TE  = 30 ms,  voxel size = 3.0 mm × 3.0 mm × 3.6 mm,  flip angle = 75◦ , FOV = 192 mm).
During the functional EPI scans, 30 oblique slices were collected over the whole
brain, oriented parallel to the AC-PC plane. Whole brain MP-RAGE structural scans
were collected (TR = 2500 ms,  TE = 4.38 ms, voxel size = 1.0 mm × 1.0 mm × 1.0 mm,
flip  angle = 8◦ , FOV = 256 mm).

2.5. fMRI data analysis

2.5.1. Preprocessing
The first four volumes of each functional run were removed to allow for equili-

bration of scanner signal. Preprocessing of fMRI data was  performed using routines
as  implemented by the SPM8 software package. All volumes from the twelve func-
tional runs were realigned to the first functional volume of the first run, correcting
for  head motion. A mean functional image was generated from the realigned time-
series and co-registered to the T1-weighted whole brain anatomical scan. These
T1-weighted anatomical images were then segmented into gray matter, white mat-
ter, and cerebrospinal fluid, and normalized to a template in Montreal Neurological
Institute (MNI) stereotactic space using the unified segmentation approach as imple-
mented in the New Segment tool in SPM8 (Ashburner & Friston, 2005). Images were
resampled to 3-mm isotropic voxels and spatially smoothed with a 8-mm FWHM
Gaussian kernel.

2.5.2. MVPA methods
Pattern classification analyses were implemented in MATLAB using the Prince-

ton  MVPA Toolbox4 (Norman, Polyn, Detre, & Haxby, 2006). All fMRI time-series
data were detrended, and z-scored within run. Classification was  carried out using
penalized logistic regression, using L2 regularization. Regularization prevents over-
fitting by punishing large weights during classifier training (Duda et al., 2001). For
ynamics of task context in free recall. Neuropsychologia (2011),

3 This software package is available at http://memory.psych.upenn.edu/
TotalRecall.

4 This software package is available at http://www.pni.princeton.edu/mvpa.

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
http://memory.psych.upenn.edu/TotalRecall
http://www.pni.princeton.edu/mvpa
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ither the size or animacy task, based on expected neural responses. For each ses-
ion, the stimulus onsets were convolved with a canonical hemodynamic response
unction and thresholded to capture the peak of the response, creating binary labels
or  each of the two  tasks. Time-points in which both or neither tasks were present
ere removed from the analysis. The classifier was  trained on a portion of the fMRI
ata from a particular participant, and was tested on a separate subset from the
ame participant. Discriminability of the neural task representations was assessed
uring the study period using a 12-fold cross-validation scheme: The classifier was
rained on all but one of the functional runs collected during study, and tested on
he  excluded run. This process was iterated twelve times, until every run served as
he test run. Overall classifier performance was defined as the average performance
cross the twelve iterations.

A  feature selection process was used to remove uninformative voxels from the
lassification. For each participant, a univariate ANOVA was run on each training set
rom the study period, testing the extent to which the signal of each voxel varied
ccording to study task. Voxels were thresholded at p < 0.05. The mean number of
ask-sensitive voxels across participants and cross-validation folds was  6177, with a
ange from 1833 to 13,093 voxels. This feature selection process, coupled with L2 reg-
larization in the classifier, served to improve classification accuracy by removing
oise sources from the data.

.5.2.2. The recall period. In order to examine task-related activity during the
etrieval portion of the experiment, the classifier was trained on all of the encoding
eriod data, and then tested on the recall period data. Classifier performance during
he recall period was evaluated by constructing an event-related average of clas-
ifier performance for the 4 s preceding and 10 s following each recall event (as in
ig.  2). Classifier performance was calculated in terms of the proportion of times the
lassifier correctly identified the encoding task associated with the recalled item. To
revent contamination from activity related to previous recalls, recall events were

ncluded in the analysis only if no recalls occurred in the preceding 10 s time period.
fter this inclusion criterion was applied, 15% of the total recall events remained

or  the event-related analysis (the range of events remaining for individual sub-
ects was  3–35%). Many events were excluded from the initial portion of the recall
eriod, during which participants tended to quickly recall a number of studied items

n  succession. This criterion also excludes items that were recalled quickly follow-
ng  another item; quick inter-response times have been associated with a strong
emporal, semantic, or source relationship between the two  items (e.g., Howard &
ahana, 2002b; Kahana, 1996; Polyn et al., 2009a). The classifier was  trained on a
et of voxels identified using a univariate ANOVA run on the study period data with
tudy task identity as a factor (as above). Voxels were thresholded at p < 0.05. The
ean number of included voxels from this procedure was 5225, with a range of

924 to 11,400 voxels across subjects.

.5.2.3. Classifier importance maps. Classifier importance maps were generated to
etermine the influence of each voxel on the classifier’s estimate of each task, as in
revious MVPA studies (McDuff et al., 2009; Rissman, Greely, & Wagner, 2010). After
raining, the classifier weights were inspected. The weight connecting a given voxel
o a particular output unit is multiplied by the voxel’s mean activity for the task
ssociated with that output unit. In the case that the weight and the mean activity
or  a given task were both positive, a positive importance weight was  assigned. If
he weight and the mean activity were both negative, a negative importance weight
as  assigned. Voxels with different signs for the weight and activation values were

ssigned an importance value of zero. The group importance map was constructed
y  averaging individual importance maps from the study phase cross-validation
rocedure, across subjects. This method differs from the one used by Polyn et al.
2005),  which only examines net positive or negative contributions to output units
f  the classifier, and is described in detail by McDuff et al. (2009, Supplementary
aterials).

. Results

.1. Behavioral performance

During the study period, participants made a judgment on each
f the 24 items. Performance was similar for the two  encoding tasks
n a number of measures, though participants were slightly faster
nd more accurate for the animacy judgments. Mean response time
or the size task was 1.20 s (SEM 0.020), and was 1.13 s (SEM 0.022)
or the animacy task; this difference of about 70 ms  was  significant
cross the full set of participants (t(54) = 6.5; p < 0.001).

We calculated a measure of response accuracy which quanti-
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

ed whether the responses made by the participant were generally
onsistent with the responses made by an independent set of par-
icipants making size and animacy judgments on the same words
see Section 2). Mean response accuracy was 0.90 (SEM 0.01); for
 PRESS
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size judgments accuracy was 0.88 (SEM 0.01), and for animacy judg-
ments response accuracy was  0.92 (SEM 0.01). This difference was
significant (t(54) = 2.84; p < 0.01), but likely had more to do with
there being slightly more ambiguity regarding the correct answer
for a size judgment as compared to an animacy judgment, than
a difference in how engaged the participants were for each task.
Response accuracy was stable across list positions (for serial posi-
tions 1–4: 0.90 [SEM 0.01]; for serial positions 5–20: 0.90 [SEM
0.01]; for serial positions 21–24: 0.89 [SEM 0.01]). Finally, partici-
pants recalled a similar proportion of items studied with each task.
Mean proportion recalled for the size task was  0.38 (SEM 0.02), and
was 0.38 (SEM 0.01) for the animacy task; this difference was not
significant (t(54) = 0.21; p > 0.5). For the analyses in the manuscript,
we collapse results across the two  encoding tasks.

A standard serial position curve was observed when proba-
bility of recall was calculated as a function of serial position. To
summarize these results, we divided the studied items into three
serial position groups (primary: 1–4, mid-list: 5–20, and terminal:
21–24), and separately calculated the proportion of items recalled
from each of these groups. Proportion recalled was  0.42 (SEM 0.02)
for the primary items, 0.33 (SEM 0.02) for the mid-list items, and
0.53 (SEM 0.01) for the terminal items. Both primary and termi-
nal items were better recalled than the mid-list items (primary
vs. mid-list, t(54) = 5.98, p < 0.001; terminal vs. mid-list, t(54) = 14.6,
p < 0.001).

Participants showed reliable temporal and source organization
of the studied material. The amount of temporal organization was
measured using temporal factor,  a percentile-based ranking mea-
sure (see Polyn et al., 2009a,  for details). This measure ranges from
0 to 1; a score of 1 would indicate perfect temporal organization
(all items recited in perfect forward or backward serial order), and a
score of 0.5 would indicate no evidence for temporal organization.
Mean temporal factor across the set of 55 participants was  0.59
(SEM 0.0085), which was significantly greater than a chance score
of 0.5 (t(54) = 10.6; p < 0.001). To quantify source organization, we
tabulated the proportion of recall transitions between same-task
items, and compared this to the proportion of same-task transitions
that one would expect by chance if the task labels were meaning-
less (this same technique was used by Polyn et al. (2009a), and
is described in more detail there). The mean source factor across
participants was 0.52 (SEM 0.010), which was  significantly greater
than the chance score of 0.48 (SEM 0.024) calculated from relabeled
same-task trials (t(54) = 4.12; p < 0.001). The source organization
score is modest in size (perfect source organization given this recall
performance would be close to 0.9), but statistically quite reliable.

3.2. Distinct neural task representations during study

A logistic regression-based classification analysis identified dis-
tinct patterns of neural activity for the two encoding tasks (size
and animacy) during study. The analysis is carried out on the indi-
vidual participant level, allowing the classifier to characterize each
participant’s idiosyncratic pattern of task-related neural activity,
and then identify the presence of these task-specific patterns on
a left-out testing set. The mean proportion of correctly identified
items was 0.61 (0.01 SEM); this was significantly above chance
(t(19) = 10.79; p < 0.001). Classifier performance for the size items
was 0.62 (SEM 0.01), and mean performance for the animacy items
was 0.61 (SEM 0.01). Classifier performance was significantly above
chance both for size items (t(19) = 11.35 ; p < 0.0001) and animacy
items (t(19) = 11.17 ; p < 0.0001), and there was no difference in
accuracy between the two tasks (t(19) = 1.43 ; p > 0.05). Classifier
ynamics of task context in free recall. Neuropsychologia (2011),

performance was reliably above chance for the 20 participants, with
a range of mean performance of 0.53–0.70. We  examined the clas-
sifier performance as a function of subsequent memory status of
the studied item (whether or not it would be later recalled). We

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025


ARTICLE IN PRESSG Model

NSY-4241; No. of Pages 11

S.M. Polyn et al. / Neuropsychologia xxx (2011) xxx– xxx 5

Fig. 1. Average classification importance map  projected onto the cortical surface.
Warm colors denote regions associated with voxels that were assigned large weights
towards making a size decision regarding encoding task identity. No regions were
identified as important for making an animacy decision at the group level, despite the
presence of animacy-related regions at the level of individual subjects. Voxels with
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Fig. 2. Task-specific neural representations are reinstated during recall. This plot
shows an event-related average of classifier performance centered on the vocaliza-
tion  time of each remembered item. Each point on the x-axis represents a whole-
brain scan (each lasting 2 s). The y-axis shows the proportion of the time that the

study of an experiment quite similar to this (Table 1). For the sim-
ulations we quantified task discriminability as the mean Euclidean
distance between task-A and task-B representations (in the model)

5

n  average weight of less than 0.0005 were removed from the map  for illustrative
urposes.

ound that subsequent memory status did not significantly affect
lassifier performance. Mean performance for recalled items was
.62 (0.01 SEM); mean performance for unrecalled items was  0.60
0.01 SEM), a non-significant difference (t(19) = 2.03 ; p = 0.056).

.3. Neuroanatomical regions informing the classifier

Fig. 1 depicts the set of voxels that most reliably influenced
he classifier’s decision across individual subjects. Despite idiosyn-
rasies in each participant’s task patterns, a number of brain regions
howed reliable task-related neural activity. Voxels whose activity
s informative regarding encoding task are assigned large weights
y the classifier. We  averaged these weights across participants
nd projected them onto a model of the cortical surface (Fig. 1).

 number of regions were identified as reliably more active for
ize judgments, including occipital and limbic sub-regions. While
ndividual subjects showed reliable animacy-related signal, the
natomical location of this signal was quite varied across partic-
pants and as such does not appear on the group-level map. The
lassifier, being trained separately on each individual participant,
as able to take advantage of these within-participant regularities.

.4. Task-specific representations are reinstated during recall

At the heart of the Context Maintenance and Retrieval (CMR)
odel is a contextual representation that contains information

bout recently experienced events, and which returns to prior
tates during memory search (Polyn et al., 2009a).  When stud-
ed items are associated with distinct source characteristics, the
ontext retrieval mechanism will cause source context to be reac-
ivated when an item is retrieved. This prediction was confirmed:
ask-specific patterns of neural activity, identified during the study
eriod, were reactivated during memory search. Fig. 2 shows an
vent-related average of classifier performance relative to the onset
f the recall event. For each time bin, we calculated the propor-
ion of events for which the classifier correctly identified the task
dentity of the remembered item. Task-related reactivation is con-
urrent with the vocalization of the recalled item, and the task
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

attern is sustained for several seconds after the recall event.
he neural response depicted on this graph is uncorrected for
ag in hemodynamic response (usually estimated as 4–6 s to peak
esponse), raising the possibility that the onset of task-specific reac-
ivation preceded the vocalization of the recalled item.
classifier correctly identified the encoding task associated with the item recalled at
time 0. Points marked with a star show performance that is significantly greater than
chance performance of 0.5 (p < 0.005, uncorrected); points marked with a plus are
significant at p < 0.05, uncorrected. Error bars represent standard error of the mean.

3.5. Task context and neural patterns during study

The integrative mechanism supporting the context representa-
tion causes recently active task representations to be maintained,
which means that when the participant shifts between tasks, the
context representation contains residual activation related to the
previous task. We  compared classifier performance for task-shift
items (preceded by the other task) and task-repeat items (preceded
by the same task), and found no reliable difference in task dis-
criminability for these two  classes of items (t(19) = 0.70 ; p > 0.4).
However, we found a reliable decline in classification performance
as a function of serial position of the studied item, using the same
serial position bins that we  used to characterize the probability of
recall above. As shown in Fig. 3, classifier performance declined
steadily over the course of the list (though classifier performance
was well above chance for each of the three groups). Performance
on the terminal positions was  significantly lower than performance
on the primary positions (t(19) = 3.2 ; p < 0.004) and the mid-list
positions (t(19) = 3.1 ; p < 0.006). A follow-up analysis examined
performance across free-recall trials within a session; we found
that performance was stable across trials (Trial 1 mean and SEM:
0.62 [0.01], Trial 2: 0.61 [0.02], Trial 3: 0.61 [0.02], all differences
not significant), suggesting that this is a within-list decline in dis-
criminability of task representations that resets for successive lists.

We ran a simulation experiment with CMR  to examine how task-
shifting and serial position affect task discriminability in the model.
This simulation confirmed that task representations get less dis-
criminable across serial positions, but also revealed a large effect
of task shifting on task discriminability, as well as an interaction
between the two effects. For this simulation, we  used the best-fit
parameters reported in Polyn et al. (2009a), a recent simulation
ynamics of task context in free recall. Neuropsychologia (2011),

as a function of serial position group. Fig. 5a shows a declinein task

5 The task representations that the Euclidean distance calculation is being per-
formed on are 2-dimensional. A city-block distance metric reveals the same pattern
of  results.

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
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a b

Fig. 3. (a) Discriminability of the neural task representations declines as a function of serial position. The study list was divided into three serial position groups: primary
(positions 1–4), mid-list (positions 5–20), and terminal (positions 21–24). While classification performance for all three groups is significantly above chance, there is a
significant decline in classifier performance between the primary and terminal positions, and the mid-list and terminal positions. Stars and pluses denote differences
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ignificant at p < 0.005 and p < 0.05, respectively. (b) The interaction of serial positi
ata,  and diamonds represent discriminability of task representations in the model
994).

iscriminability across serial position groups. The rate of this
ecline is sensitive to a parameter ˇenc (discussed above) that
ontrols the rate at which task information is integrated into the
ontext representation. This decline in task discriminability was
eliably seen for a wide range of values of ˇenc (i.e., 0.3 ≤ ˇenc ≤ 0.9,

 range in which the model could produce reasonable behavioral
esults).

In Fig. 3b we examine the relationship between task-shifting
nd serial position more closely, for both neural data and simu-
ated data. We  divide each serial position group into shift and repeat
tems. An ANOVA examining classifier performance in terms of the
wo factors (shift/repeat status and serial position group) revealed

 main effect of shift/repeat status (F(1, 19) = 11.49 ; p < 0.005),
o main effect of serial position (F(2, 19) = 1.21 ; p < 0.3), and an

nteraction between the two factors (F(2, 19) = 6.49 ; p < 0.005). A
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

imilar analysis on the simulated data revealed a main effect
f shift/repeat status (F(1, 39) = 476 ; p < 0.005), a main effect of
erial position (F(2, 39) = 61 ; p < 0.005), and an interaction between

able 1
est-fit parameters of the Context Maintenance and Retrieval model.

Parameter Value Description

ˇtemp
enc 0.776 Contextual integration rate for temporal

information during study
ˇtemp

rec 0.510 Contextual integration rate for temporal
information during recall

ˇsource
enc 0.588 Contextual integration rate for source

information during study
ˇsource

rec 0.588 Contextual integration rate for source
information during recall

LCF
sw 0.129 Association strength between source-context

and item features
d 0.767 Controls disruption of temporal context due to

task-shift
�FC 0.898 Relative weight of expt. to pre-expt. context
s  2.78 Strength of semantic associations between

studied items
� 0.111 decay of activation in the decision competition
�  0.338 Lateral inhibition in the decision competition
�  0.159 Magnitude of noise in the decision competition
�  0.174 Time-constant for the decision competition
�s 1.07 Added associative strength for primary list

items
�d 0.981 Decay of increased associative strength for

primary items

ote: The best-fit CMR  parameters from Polyn et al. (2009a), used in the current
imulations.
up and shift (S)/repeat (R) status. Bars represent classifier performance on neural
 bars are 95% confidence intervals based on within-subject error (Loftus & Masson,

the two  factors (F(2, 39) = 1775 ; p < 0.005). In the neural data,
task-repeat items enjoy a great advantage in discriminability rel-
ative to task-shift items in the first group of serial positions
(t(19) = 3.61 ; p < 0.005), but this advantage fades for the middle
group of serial positions (t(19) = − 1.45 ; p > 0.1). A small difference
between task-shift and task-repeat items is observed for the final
serial position group, but is of marginal significance considered on
its own  (t(19) = 1.40 ; p > 0.1).

In contrast to the pattern of neural results, the model predicts
that some difference between task-shift and task-repeat items will
be observed for all serial position groups. However, the model does
predict that the difference in discriminability between task-shift
and task-repeat items will reduce as the list progresses. The dis-
criminability of the task context representations changes across
list positions because the model begins the list with a pure rep-
resentation of the task context associated with the first list item,
but once the model shifts between encoding tasks, the task con-
text representation becomes a blend of information related to
each of the two task contexts (due to the integrative properties
of context). According to the model, task-shift items should be less
discriminable (relative to task-repeat items) in early serial posi-
tions, since they are being integrated into a representation that
is purely representing the other task. In later serial positions, the
context representation is already a blend of the two  tasks (owing to
several task shifts) and the difference in discriminability between
task-shift and task-repeat items will be reduced.

While the absence of a shift/repeat effect for mid-list serial
positions could be related to a lack of statistical power, other neu-
rorecording studies of free-recall provide important guidance. In
particular, Sederberg et al. (2006) showed that the neural response
to a studied item changes as a function of list position, perhaps
owing to across-list changes in the effectiveness of encoding (also
Wiswede, Russeler, & Munte, 2007). The possibility that model
dynamics change with respect to list position may  provide insight
into an aspect of the neural data not captured by the model: the
steady decline in task discriminability across all serial positions.
The model predicts that task discriminability will level off at mid-
list serial positions (Fig. 5a). A follow-up simulation provides one
possible mechanism by which the model could capture this decline:
A variable ˇenc parameter that decreases steadily across the list
ynamics of task context in free recall. Neuropsychologia (2011),

(representing perhaps a participant able to extract less information
from each successive studied item). Fig. 5b shows this within-list
decline in task discriminability. We return to this modified version
of the model in the discussion.

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
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.6. Classification performance correlates with the magnitude of
he recency effect

Finding that task-specific patterns of neural activity are rein-
tated during the recall period raises the possibility that these
eural patterns are functionally relevant to the memory search
rocess itself. As such, the fidelity of these representations dur-

ng the study period may  allow us to predict how participants will
ehave during the memory test. We  examined whether individ-
al differences in the ability of the classifier to discriminate the
wo tasks during encoding were correlated with individual dif-
erences in performance at the behavioral level. We  conducted a
orrelation analysis in which the classifier performance across par-
icipants was compared to a number of behavioral measures. We
ncluded measures of proportion of items recalled, temporal factor
as described above), source factor (as described above), the pri-

acy effect (proportion of primary items recalled as compared to
id-list items), and the recency effect (the probability that a par-

icipant begins his or her recall sequence with the final item from
he study list). We  found a strong and significant positive relation-
hip between the magnitude of the recency effect and the ability
f the classifier to discriminate items studied using each of the two
ncoding tasks (Fig. 4a; r = 0.63, p < 0.01, Bonferroni corrected). The
ther comparisons were not significant. It is unclear, upon first con-
ideration, why there should be a relationship between the fidelity
f neural task representations and the magnitude of the behav-
oral recency effect. However, the CMR  model provides a possible
xplanation.

As described in the introduction, CMR  proposes that memory
earch is guided by an internal context representation which con-
ains information about the temporal context and the task context
f the studied material. Fig. 5d shows the effect of altering ˇtemp

enc

n the recency effect (measured here as the probability that a par-
icipant begins recall with the final item from the study list). As
temp
enc increases (the high integration simulation), the recency effect
ets sharper (i.e., the simulated participant is more likely to begin
ecall with the final studied item). A high value for ˇtemp

enc means that
hen new information is projected from the feature representation

o context (along the item-to-context associations), this incoming
nformation forces out information relating to prior studied items
if ˇtemp

enc was set to 1, the new information would completely over-
rite whatever information had been in context). The recall process

s competitive: all items from the study list are fighting with one
nother to be the first item recalled. An item’s effectiveness in the
ecall competition is directly related to how well the item’s featu-
al representation is associated with the current contextual cue. As
eviewed above, a high value for ˇtemp

enc means that at the beginning
f the recall period, the context representation is highly associated
ith the final item (much more so than with earlier items). Thus,

he terminal list item competes more effectively when integration
ate is high.

Examining the task representations in the model, we  find that
ith higher values of ˇsource

enc , the task representations associated
ith the set of task-A and task-B items are more distinct from

ne another. This is shown in Fig. 5c, where we present the mean
uclidean distance between task context states for the set of A
tems, and for the set of B items. As the integration rate increases,
he mean distance between the contextual states for the A items
nd the B items increases. This is simply because participants with

 higher integration rate are able to more quickly clear out their
ontext representations when a new task comes along. For par-
icipants with a low integration rate, task context is more of a
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

lend between task A and task B representations. Comparing Fig. 5c
nd d, we see that there are two consequences to altering integra-
ion rate in the model: A change in the magnitude of the recency
ffect, and a change in the fidelity of task representations. Fig. 4b
 PRESS
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shows this relationship graphically; altering ˇenc reveals a strong
correlation between recency magnitude and task discriminability
(r = 0.98 ; p < 0.0007).

In Polyn et al. (2009a), the two  context subdivisions were con-
trolled by separate parameters, ˇtemp

enc and ˇsource
enc . However, the

observed relationship between task discriminability and recency
suggests that perhaps the two  ˇenc sub-parameters are yoked to one
another: if a participant has high integration of temporal informa-
tion, they also have high integration of task information. We return
to this point later, in a broader discussion of individual differences.

The question arises as to why, of the 5 behavioral measures we
examined (overall recall, temporal organization, source organiza-
tion, recency effect, and primacy effect), only recency was related
to the discriminability of neural task representations. If one varies
ˇenc in CMR, each of these 5 behavioral measures varies somewhat.
However, the recency effect, measured as the likelihood that one’s
very first response is from the final serial position of the list, is
unique among the 5 as being the one that is least sensitive to other
CMR  parameters that control recall dynamics. For example, con-
sider the model parameter controlling contextual retrieval: ˇrec.
Varying this parameter causes large variability in each of these
behavioral measures, except for the recency effect, which is com-
pletely unaffected by changes in ˇrec. This is because contextual
retrieval is a process that occurs after each item is recalled, and since
the recency effect (as we measure it here) is based only on the first
recall, it is unaffected. In other words, the relationship between
recency and task discriminability may  arise because recency is
selectively sensitive to individual differences in contextual inte-
gration rate during encoding. In future work, we  hope to obtain
estimates of both ˇenc and ˇrec (as well as other model parameters)
for each individual, which will allow us to assess the joint influence
of these parameters on a wide range of behavioral measures.

4. Discussion

In the case of free recall of categorized materials (as in Polyn
et al., 2005), it is difficult to determine whether reinstated category-
specific neural activity reflects the category-specific characteristics
of the retrieved materials themselves, or the contextual cue used
to probe for those materials. However, in the current paradigm, the
same study items could be presented in the context of either of the
encoding tasks. The observation of reactivation of source-specific
neural patterns is direct evidence in support of the retrieved con-
text hypothesis:  When a particular item is remembered, the memory
system also retrieves the broader contextual details associated with
the study event. The other analyses in this report characterize the
dynamics of these source-specific neural patterns during the study
period. We  show that the discriminability of these task represen-
tations is related to both serial position and task-shifting, and that
individual differences in the fidelity of these patterns (as measured
by classifier performance during the study period) are related to
the magnitude of the recency effect (as measured by the tendency
to begin recall with the final list item).

4.1. The neural reactivation of source representations during
memory search

Previous studies have shown reactivation of source-related pat-
terns of neural activity during recognition (Johnson & Rugg, 2007),
and during source recall (McDuff et al., 2009), but this is the
ynamics of task context in free recall. Neuropsychologia (2011),

first report (to our knowledge) of source-related reactivation dur-
ing free recall. We  seed the list with items associated with two
well-matched but neurally discriminable study tasks. From a levels-
of-processing standpoint, these two tasks are of equivalent depth,

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
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a b

Fig. 4. Examining the relationship between the magnitude of the recency effect and classifier performance on task identity during the study period. (a) A scatterplot of the
relationship between these two variables; dashed line indicates the best-fit line of a regression analysis (r = 0.61; p < 0.05). (b) A simulation analysis using CMR  examining the
relationship between the recency effect and the discriminability of task representations (mean Euclidean distance between task representations for task-A and task-B items).
Each  point represents a simulation experiment sweeping the ˇenc parameter from low to high values, while holding the other parameters at the best-fit levels reported in
Table  1. Regression analysis revealed a similar correlation between the two measures (r = 0.98; p < 0.007) for the simulation.

a b

c d

Fig. 5. Simulation analyses using CMR. (a) Simulation examining the decline in task discriminability with serial position group. (b) If ˇenc declines steadily across serial
positions (0.02 per position) then task discriminability decreases across all three serial position groups. (c) Simulations examining the internal representation of task context
in  CMR  for three levels of the context integration parameter ˇenc . Average Euclidean distance between the two task context states decreases as ˇenc decreases. (d) Simulation
showing how the magnitude of the recency effect (as measured by the probability of first recall by serial position) is also influenced by ˇenc . The Best fit parameter set
corresponds to the parameters reported in Polyn et al. (2009a) for a free-recall paradigm very similar to the one reported here. For High integration and Low integration
simulations we manipulated the ˇenc parameter (see text for details).

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
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iven the equivalent memorability of the items associated with
ach task (Craik & Lockhart, 1972).

We found that patterns of neural activity sensitive to the identity
f the encoding tasks were reactivated while participants searched
heir memories for the studied material. A major open question
egards the functional nature of this reactivated activity. One might
uggest that we are observing reactivation of a task representa-
ion used by the executive system to ensure that a stimulus is
rocessed appropriately (as in Cohen, Dunbar, & McClelland, 1990).

t is also possible that this neural activity represents a reactivation
f the cognitive procedures used while making the judgment itself
Kolers & Roediger, 1984). Future work can approach this prob-
em both through further development of the computational model
to account for the dynamics of task performance as well as the
ynamics of memory search) as well as further investigations of the
eural signals underlying these effects (to determine other possi-
le points of contact between these representations and behavioral
erformance).

.2. The dynamics of source representations during the study
eriod

The discriminability of task-related neural representations was
ffected by task-shifting and the serial position of the studied
tem, but unaffected by whether the studied item would later be
ecalled. This suggests that variability in classification performance
as not necessarily related to lapses in attention on the part of

he participant; the encoding task properly oriented the partici-
ant to the studied item. In line with this observation, we found
hat response accuracy did not change over the course of the list.
ven though responses remained accurate, classifier performance
eclined significantly over the course of the list. Performance did
ot continually decline across multiple lists, rather, task discrim-

nability seemed to reset itself with each new study list.
Our simulations using the CMR  model provide explanations

or the difference in discriminability between task-shift and task-
epeat items, and the decline in discriminability with increasing
erial position. As the list progresses, the dynamics of the context
epresentation cause task representations to become less distinct.

hen the first item is studied, the representation for whichever
ncoding task is used is integrated into task context. Since this is
he first list item, we assume there is no information related to the
ther task in the context representation, resulting in a relatively
ure representation of the encoding task. As the list progresses,
nd the participant is asked to shift back and forth between the
asks, the context representation becomes blended; the integra-
ion process causes task context to represent a mix  of the two  task
epresentations.

Further work is needed to understand some of the differences
etween the simulated data and the neural data. For example, our
imulations suggest (Fig. 3b, diamonds) that the difference in dis-
riminability between shift and repeat items (with repeat items
aving more discriminable task representations) should be main-
ained across all serial positions, whereas in the neural data this
ifference is only reliably exhibited for primary list positions. How-
ver, the model does predict that mid-list shift and repeat items will
how less of a difference in task discriminability than primary shift
nd repeat items. Further work is needed to determine whether this
ifference between simulation and data is a true qualitative differ-
nce, or is simply due to a low signal-to-noise ratio in the neural
ata.

The simulations also suggest (Fig. 5a) that the decline in dis-
Please cite this article in press as: Polyn, S. M., et al. The neural d
doi:10.1016/j.neuropsychologia.2011.08.025

riminability with serial position should asymptote by mid-list,
hereas the neural data shows a continual decline in task dis-

riminability with serial position (Fig. 3a). The literature suggests a
umber of ways to interpret a steadily declining ability to integrate
 PRESS
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information about successively studied items. The first comes from
the scalp electroencephalographic (EEG) literature. Sederberg et al.
(2006) suggest, based on changes in oscillatory dynamics across
the study list, that an initial burst of focused encoding (attending
exclusively to the item on-screen) gives way to divided encoding
(dividing cognitive resources between the current item and the
many items that have been recently presented). This is related to
the idea that participants sometimes think back to previous items
as the list progresses (Brodie & Murdock, 1977; Rundus, 1971; Tan &
Ward, 2000). An ever-increasing tendency to engage in rehearsal of
previous items would cause these items to retrieve their associated
task context, which would make the task context representation
more of a blend of the two  tasks. By this hypothesis, individual dif-
ferences in rehearsal strategies could be related to the decline in
task performance over serial positions. This rehearsal or divided-
encoding hypothesis also provides a satisfactory account of why
task discriminability resets between lists: If task discriminability
declines because participants are thinking back to earlier list items,
when they start a new list, there are very few items to think back to.
The divided-encoding hypothesis can be instantiated in the model
by steadily decreasing the context integration parameter over the
course of the list. This represents a declining ability to effectively
extract information from a stimulus presented in the environment,
and allows the model to capture the continual decline in task dis-
criminability across serial positions.

Characterizing rehearsal is particularly challenging given the
covert nature of the process. Pattern classification techniques may
provide some leverage in this domain. If a list was  constructed such
that participants studied a number of items drawn from one class,
followed by a number of items from a second class, one could exam-
ine whether neural patterns related to the first set of items are
detected in the latter part of the list (potentially indexing the degree
of covert rehearsal). The CMR  model has not been extended to cap-
ture the behavioral dynamics associated with rehearsal. However,
such an approach may  be straightforward, as a number of stud-
ies suggest that the dynamics of rehearsal mirror the dynamics of
recall itself (Laming, 2006; Murdock & Metcalfe, 1978). Allowing
the model to engage in rehearsal may  simply involve activating
memory search during the inter-item intervals as the list pro-
gresses.

4.3. Using CMR to explore individual differences at a neural and
behavioral level

An advantage of having a formal computational framework to
describe human memory is that the framework can be tuned to
explain the differences in memory performance seen between indi-
viduals. In examining how the performance of the classifier (applied
to the study period) was  related to various behavioral measures,
we found a strong correlation between the ability of the classi-
fier to discriminate the two encoding tasks, and the magnitude
of the recency effect. Simulation analyses showed that a single
model parameter (ˇenc) controlling the rate of context integration
during encoding can explain the relationship between these two
phenomena. The simulations described by Polyn et al. (2009a) did
not consider the possibility that the two sub-parameters related to
contextual integration during study (ˇtemp

enc and ˇsource
enc ) were linked

to one another, in part because this prior work examined aggregate
behavior, averaged across participants. In this study, the observed
relationship between the recency effect and neural task discrim-
inability motivated examining a variant of CMR  in which contextual
integration for temporal information and for source information is
ynamics of task context in free recall. Neuropsychologia (2011),

related.
The recency effect, as measured by the tendency to start the

recall sequence with the terminal list item, has been shown to
correlate with working memory capacity (e.g., Unsworth & Engle,

dx.doi.org/10.1016/j.neuropsychologia.2011.08.025
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007; Fig. 5). Participants with a low working memory span have a
harp recency effect (a high probability of initiating recall with the
erminal list item), and participants with a high working memory
pan have a more shallow recency effect. This provides an interest-
ng way to interface the CMR  model with the broader literature on
ndividual differences in memory. By this story, the disadvantage
xhibited by low-span individuals in memory tests is related to

 high context integration rate; the context representation at any
iven time is focused on a rather narrow temporal interval, rep-
esenting only the quite recent past. This hypothesis seems quite
omplementary to ongoing work characterizing individual differ-
nces in free recall and working memory (Unsworth & Engle, 2007).
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